Analysis of accumulation patterns and preliminary study on the condensation mechanism of proanthocyanidins in the tea plant [Camellia sinensis]

نویسندگان

  • Xiaolan Jiang
  • Yajun Liu
  • Yahui Wu
  • Huarong Tan
  • Fei Meng
  • Yun sheng Wang
  • Mingzhuo Li
  • Lei Zhao
  • Li Liu
  • Yumei Qian
  • Liping Gao
  • Tao Xia
چکیده

In the present study, proanthocyanidins were qualitatively and quantitatively identified using hydrolysis and thiolysis assays, NP-HPLC, HPLC-ESI-MS, MALDI-TOF-MS, (1)H-NMR, and (13)C-NMR techniques in different organs of tea plants. The results showed that in leaves, the tri-hydroxyl, cis- and galloylated flavan-3-ols were the main monomeric catechins units, and (epi)catechin was found to be the major unit of polymeric flavan-3-ols when the degree of polymerization was greater than five. In roots, the PAs were found to be abundant, and epicatechin formed the predominant extension unit of oligomeric and polymeric PAs. In order to understand the mechanism of proanthocyanidins polymerization, auto-condensation of the flavan-3-ols was investigated. The results showed that the same trimers (m/z 865) were detected in the extracts of tea plants and in the non-enzymatic in vitro assay, in weak acid as well as weak alkaline solutions at room temperature, when the substrates used were either procyanidin B2 and monomeric flavan-3-ols (epicatechin or catechin), or only procyanidin B2. This suggested that procyanidin B2 not only released carbocation as electrophilic upper units, but also could be used as nucleophilic lower units directly itself, to form the procyanidin trimer in vitro or in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Analysis of Two Flavanone-3-Hydroxylase Genes from Camellia sinensis: A Critical Role in Flavonoid Accumulation

Flavonoids are major secondary metabolites in Camellia sinensis. Flavanone-3-hydroxylase (F3H) is a key enzyme in flavonoid biosynthesis in plants. However, its role in the flavonoid metabolism in C. sinensis has not been well studied. In this study, we cloned two F3Hs from C. sinensis, named CsF3Ha and CsF3Hb, where CsF3Ha containing 1107 bases encoded 368 amino acids, and CsF3Hb containing 10...

متن کامل

Tissue-Specific, Development-Dependent Phenolic Compounds Accumulation Profile and Gene Expression Pattern in Tea Plant [Camellia sinensis]

Phenolic compounds in tea plant [Camellia sinensis (L.)] play a crucial role in dominating tea flavor and possess a number of key pharmacological benefits on human health. The present research aimed to study the profile of tissue-specific, development-dependent accumulation pattern of phenolic compounds in tea plant. A total of 50 phenolic compounds were identified qualitatively using liquid ch...

متن کامل

Investigation of the interaction between abscisic acid (ABA) and excess benzyladenine (BA) on the formation of shoot in tissue culture of tea (Camellia sinensis L.)

The effect of abscisic acid (ABA) and excess benzyladenine (BA) on the formation of shoot from tea (Camellia sinensis L. assamica × sinensis) leaf was investigated in this research. Callus was formed and grew well when explants were cultured on LS basal medium supplemented with (in mg/L) thiamine-HCl, 1.25; pyridoxine-HCl, 0.625; nicotinic acid, 0.625; indole-3-acetic acid (IAA), 30; naphthalen...

متن کامل

Study of ethanolic extract of green tea (Camellia sinensis) on the treatment of white spot disease in goldfish (Carassius auratus)

Ichthyophthirius multifilii (Ich) is likely to cause more damage to freshwater aquarium fish than other eukaryotic pathogens. Due to the reported side effects and environmental effects, scientists are trying to replace chemicals with plant extracts to treat this parasite. In this study, the effect of ethanolic extract of green tea (Camellia sinensis) in the treatment of fish infected with the...

متن کامل

Study on lead levels in infusion time of imported green and black tea (Camellia sinensis L)

Background: Nowadays, tea is the most popular and frequently consumed beverages in the world after water. There are some beneficial trace elements in tea such as fluoride, caffeine and essential minerals, although there may be heavy metals in tea leaves which threat seriously human health. Therefore, the main objective of current study was to determine and monitor lead content in imported black...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015